Chapitre 5 Suites numériques – COURS

1.	Mod	des de génération d'une suite	. 2
		Définition par une fonction de <i>n</i>	
		Définition par une relation de récurrence	
		Représentation graphique	
		es arithmétiques, suites géométriques	

1. Modes de génération d'une suite

1.1 Définition par une fonction de n

- Les suites sont des fonctions de \mathbb{N} vers \mathbb{R} .
- On note (U_n) la suite (avec des parenthèses).
- On note U_n le réel qui est l'image de l'entier naturel n par la suite (U_n)

Exemple:

Soit la suite (U_n) définie pour tout $n \in \mathbb{N}$ par $U_n = (n-4)^2 - 2$.

 $\underline{\textit{Vocabulaire}:}$ On dit que U_n est $\underline{\textit{le terme général}}$ de la suite.

1.2 Définition par une relation de récurrence

(du latin recurrens qui signifie revenir en arrière)

- 1. Signification dans le langage courant : qui revient, réapparaît, se reproduit.
- 2. Série récurrente : Suite dont le terme général s'exprime à partir du terme ou des termes le précédant.

Exemple : Soit la suite (U_n) définie pour tout $n \in \mathbb{N}$ par $\begin{cases} U_0 = \mathbf{2} \\ U_{n+1} = \frac{1}{2}U_n + 3 \end{cases}$

Le calcul des premiers termes se fait en remplaçant n par les valeurs 0 ; 1 ; 2 ; ...

$$U_{0+1} = \frac{1}{2}U_0 + 3 \quad U_1 = \frac{1}{2}U_0 + 3 \quad U_1 = \frac{1}{2} \times \mathbf{2} + 3 \quad U_1 = \mathbf{4}$$

$$U_{1+1} = \frac{1}{2}U_1 + 3 \quad U_2 = \frac{1}{2}U_1 + 3 \quad U_2 = \frac{1}{2} \times \mathbf{4} + 3 \quad U_2 = \mathbf{5}$$

$$U_{2+1} = \frac{1}{2}U_2 + 3 \quad U_3 = \frac{1}{2}U_2 + 3 \quad U_3 = \frac{1}{2} \times \mathbf{5} + 3 \quad U_3 = \frac{\mathbf{11}}{\mathbf{2}} \dots$$

Remaraue:

Soit la suite (V_n) définie pour tout $n \in \mathbb{N}^*$ par $\begin{cases} V_0 = \mathbf{2} \\ V_n = \frac{1}{2}V_{n-1} + 3 \end{cases}$ est identique à la suite (U_n)

Le calcul des premiers termes se fait en remplaçant n par les valeurs 1; 2; 3; ...

1.3 Représentation graphique

On représente les suites par <u>des points</u> dont les abscisses sont des entiers naturels (ce sont les valeurs de n). Les ordonnées (ce sont les valeurs de U_n) sont des réels quelconques.

Exemple:

 (U_n) est la suite définie pour tout $n \in \mathbb{N}^*$ par $U_n = 1 + \frac{1}{n}$

$$U_1 = 1 + \frac{1}{1} = 2$$
; $U_2 = 1 + \frac{1}{2} = \frac{3}{2}$; $U_3 = 1 + \frac{1}{3} = \frac{4}{3}$; $U_4 = 1 + \frac{1}{4} = \frac{5}{4}$...

2. Suites arithmétiques, suites géométriques

	Suites arithmétiques	Suites géométriques
Définition par une relation de récurrence	Pour tout $n \in \mathbb{N}$: $ \begin{cases} u_0 \\ u_{n+1} = u_n + r \end{cases}$	Pour tout $n \in \mathbb{N}$: $ \begin{cases} u_0 \\ u_{n+1} = u_n \times q \end{cases}$
recurrence	$u_{n+1} = u_n + r$ r est une constante appelée raison	$u_{n+1} = u_n \times q$ q est une constante non nulle appelée raison
	Exemple: $\begin{cases} u_0 = 10 \\ u_{n+1} = u_n - 2 \end{cases}$	Exemple: $(u_0 = 10)$
Définition en	Pour tout $n \in \mathbb{N}$:	$\begin{cases} u_0 = 10 \\ u_{n+1} = -2u_n \end{cases}$ Pour tout $n \in \mathbb{N}$:
fonction de n à partir de u_0	$u_n = u_0 + nr$	$u_n = u_0 \times q^n$
	Exemple : $ \text{Pour tout } n \in \mathbb{N} : $	
	$u_n = 10 - 2n$	$u_n = 10 \times (-2)^n$
Définition en fonction de n à partir d'un terme	Pour tout entier $n \geq p$: $u_n = u_p + (n-p)r$	Pour tout entier $n \geq p$: $u_n = u_p \times q^{n-p}$
u_p	Exemple :	Exemple :
	Pour tout entier $n \ge 5$: $u_n = u_5 - 2(n-5)$	Pour tout entier $n \ge 5$: $u_n = u_5 \times (-2)^{n-5}$
Somme de termes consécutifs	$S = \frac{(1^{er} ter. + dernier ter.) \times n^{bre} termes}{2}$	$S = 1^{er} terme \times \frac{1 - q^{n^{bre} termes}}{1 - q}$
	Exemple: $S = u_3 + u_4 + \dots + u_9$	Exemple :
	$u_n = 10 - 2n$	$S = u_3 + u_4 + \dots + u_9$ $u_n = 10 \times (-2)^n$
	$u_3 = 10 - 2 \times 3 = 4$ $u_9 = 10 - 2 \times 9 = -8$	$u_3 = 10 \times (-2)^3 = -80$ $n^{bre} \ termes = 9 - 3 + 1 = 7$
	$n^{bre} termes = 9 - 3 + 1 = 7$	n = 100
	$S = \frac{(4 + (-8)) \times 7}{2}$	$S = -80 \times \frac{1 - (-2)^7}{1 - (-2)}$
	S = -14	$S = -80 \times \frac{1 - (-128)}{3}$ $S = -80 \times \frac{129}{3}$
		$S = -80 \times {3}$ $S = -3440$