CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

1	Lan	gage de la continuité	2
	1.1	Définition	2
	1.2	Illustration graphique	2
	1.3	Fonctions usuelles	2
2	Thé	orème des valeurs intermédiaires	3
	2.1	Enoncé	3
	2.2	Interprétation graphique	3
	2.3	Condition suffisante pour qu'une fonction $m{f}$ soit une bijection	3
	2.4	Corollaire du théorème des valeurs intermédiaires	4
	2.5	Extension	4
3	Fon	ctions dérivables	4
	3.1	Nombre dérivé, fonction dérivée	4
	3.2	Ecriture différentielle	4
	3.3	Dérivabilité et continuité	5
	3.4	Dérivation d'une fonction composée	5
4	Fon	ctions cosinus et sinus	6
	4.1	Dérivée des fonctions cosinus et sinus	6
	4.2	Propriétés des fonctions sinus et cosinus	7
	4.2.	1 Parité	7
	4.2.	2 Périodicité	7
	4.3	Représentation graphique des fonctions cosinus et sinus.	7

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

1 Langage de la continuité

1.1 Définition

Soit f une fonction définie sur un intervalle I et a un réel de I.

- ightharpoonup Dire que f est continue en a signifie que $\lim_{x\to a} f(x) = f(a)$
- \blacktriangleright Dire que f est continue sur I signifie que f est continue en tout réel de I.

1.2 Illustration graphique

Lorsqu'une fonction est continue sur un intervalle I, sa représentation graphique sur I peut être tracée sans lever le crayon.

Contre-exemple:

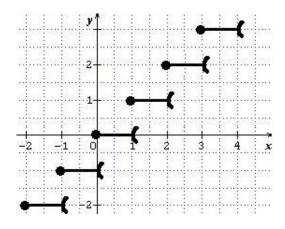
La partie entière d'un réel x, notée E(x), est le plus grand entier relatif inférieur ou égal à x.

Exemples : E(2,4) = 2

 $E(\pi)=3$

 $E\left(-\frac{1}{4}\right) = -1$

E est la fonction qui, à tout réel x, associe l'unique entier relatif n tel que $n \le x \le n+1$



La fonction partie entière n'est pas continue sur \mathbb{R} . Preuve :

$$\lim_{\substack{x\to 2\\x<2}} E(x) = 1 \qquad \qquad E(2) = 2 \qquad \lim_{\substack{x\to 2\\x<2}} E(x) \neq E(2) \qquad \text{Donc E n'est pas continue en 2}$$

1.3 Fonctions usuelles

- ightharpoonup Les fonctions polynômes, valeur absolue, sinus et cosinus sont continues sur \mathbb{R} .
- \triangleright La fonction racine carrée est continue sur \mathbb{R}^+ .
- Les fonctions construites par opération ou par composition à partir des précédentes sont continues sur leur ensemble de définition. (Ex : les fonctions rationnelles)

2 Théorème des valeurs intermédiaires

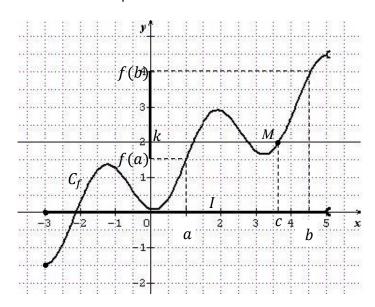
2.1 Enoncé

- Soit f une fonction <u>continue</u> sur un intervalle I, a et b deux réels de I.
- Pour tout réel k compris entre f(a) et f(b), il existe **au moins un** réel c compris entre a et b tel que f(c) = k.

2.2 Interprétation graphique

Soit C_f la courbe représentative de f.

Pour tout réel k compris entre f(a) et (b), la droite d'équation y = k coupe **au moins une fois** la courbe C_f en un point d'abscisse c comprise entre a et b.



2.3 Condition suffisante pour qu'une fonction f soit une bijection

Si une fonction f est continue et strictement croissante sur un intervalle [a;b] alors la fonction f est une bijection de [a;b] vers [f(a);f(b)]

Si une fonction f est continue et strictement décroissante sur un intervalle [a;b] alors la fonction f est une bijection de [a;b] vers [f(b);f(a)]

2.4 Corollaire¹ du théorème des valeurs intermédiaires

Soit f une fonction <u>continue et strictement monotone</u> sur un intervalle [a; b]

Pour tout réel k compris entre f(a) et f(b) l'équation f(x) = k admet **une solution unique** dans [a;b]

2.5 Extension

Le corollaire s'étend au cas où f est continue et strictement monotone sur un intervalle ouvert ou semi-ouvert, borné ou non, c'est-à-dire sur des intervalles du type $]a;b[, [a;b[, [a;+\infty[...$

3 Fonctions dérivables

3.1 Nombre dérivé, fonction dérivée

Soit f une fonction définie sur un intervalle I.

 $\triangleright a$ et a+h sont deux réels de l'intervalle I avec $h \neq 0$.

Dire que
$$f$$
 est dérivable en a signifie que
$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=l \ avec \ l\in \mathbb{R}$$

l est le nombre dérivé de la fonction f calculé en x=a. On note f'(a)=l.

ightharpoonup Dire que f est dérivable sur I signifie que f est dérivable en tout x de I.

La fonction dérivée, notée f', est la fonction : $x \mapsto f'(x)$

Interprétation graphique de « f est dérivable en a » :

Soit C_f la courbe représentative de f dans un repère. Une équation de la tangente T_a à C_f au point d'abscisse a est : y = f'(a)x + p, où p est un réel à déterminer.

3.2 Ecriture différentielle

Soit f une fonction définie sur I, x un réel de I et f une fonction dérivable en x.

Avec l'écriture différentielle, on note :

$$f'(x) = \frac{dy}{dx}$$

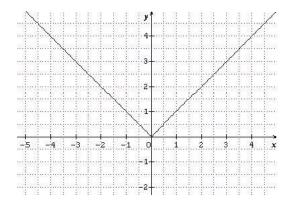
¹ Corollaire : Proposition qui se déduit immédiatement d'une proposition déjà démontrée

3.3 Dérivabilité et continuité

Soit f une fonction définie sur I et a un réel de I.

Si f est dérivable en a , alors f est continue en a .

La réciproque est fausse.



Exemple: Etude de la fonction $f: x \mapsto |x|$ en x = 0

Etude de la continuité en 0: $\lim_{x\to 0} f(x) = 0$ et f(0) = 0 donc $\lim_{x\to 0} f(x) = f(0)$.

Donc la fonction valeur absolue est continue en 0.

• Etude de la dérivabilité en 0 :
$$\lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0} \frac{|0+h|-|0|}{h}$$

Si
$$h < 0$$
 alors $|h| = -h$ et $\lim_{h \to 0} \frac{|0+h| - |0|}{h} = \lim_{h \to 0} \frac{-h}{h} = -1$
Si $h > 0$ alors $|h| = h$ et $\lim_{h \to 0} \frac{|0+h| - |0|}{h} = \lim_{h \to 0} \frac{h}{h} = 1$
 $h > 0$

Si
$$h > 0$$
 alors $|h| = h$ et $\lim_{h \to 0} \frac{|0+h| - |0|}{h} = \lim_{h \to 0} \frac{h}{h} = 1$

$$\begin{array}{ll} \text{Conclusion:} & -1 \neq 1 & \text{donc } \lim\limits_{h \rightarrow 0} \frac{f(0+h) - f(0)}{h} \neq \lim\limits_{h \rightarrow 0} \frac{f(0+h) - f(0)}{h}. \\ & h < 0 & h > 0 \end{array}$$

 $\lim_{h\to 0} \frac{f(0+h)-f(0)}{h}$ n'existe pas. Donc la fonction valeur absolue n'est pas dérivable en 0.

3.4 Dérivation d'une fonction composée.

Rappel : on note $f \circ u$ la fonction u suivie de la fonction f

$$f \circ u \left\{ \begin{array}{ccc} I & \to & J & \to & K \\ x & \mapsto & u(x) & \mapsto f[u(x)] \end{array} \right.$$

Soit u une fonction dérivable sur un intervalle I et f une fonction dérivable sur un intervalle J.

Alors la fonction $f \circ u$ est dérivable sur I

Cas particuliers à connaître :

$I \to J \to K$ $x \mapsto u(x) = ax + b \mapsto f[ax + b]$	Si pour tout $x \in I$, f est dérivable en $ax + b$, alors $f \circ u$ est dérivable sur I	$(f \circ u)'(x) = a \times f'(ax + b)$
$I \to J \to K$ $x \mapsto u(x) \mapsto \sqrt{[u(x)]}$	Si pour tout $x \in I$, $u(x) > 0$ alors \sqrt{u} est dérivable sur I	$\left(\sqrt{u}\right)'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$
$\begin{array}{ccc} I & \to & J & \to & K \\ x \mapsto u(x) \mapsto [u(x)]^n \text{ avec } n \in \mathbb{Z} \end{array}$	Si pour tout $x \in I$, $u(x) \neq 0$ alors u^n est dérivable sur I	$(u^n)'(x) = n \ u^{n-1}(x) \ u'(x)$

Exemple 1:

Soit f définie sur $[1; +\infty[$ par $f(x) = \sqrt{5x-2}$.

$$f \begin{cases} [1; +\infty[\rightarrow]0; +\infty[\rightarrow \mathbb{R} \\ x \mapsto 5x - 2 \mapsto \sqrt{5x - 2} \end{cases}$$

 $f = \sqrt{u}$ avec u(x) = 5x - 2 et $x \in [1; +\infty[$

u est dérivable sur $[1; +\infty[$ et u'(x) = 5

• Si $x \in [1; +\infty[$, alors $x \ge 1$ donc $5x - 2 \ge 3$ donc $5x - 2 \in]0; +\infty[$ soit $u(x) \in]0; +\infty[$ La fonction racine carrée est dérivable sur $]0; +\infty[$

Donc pour tout x de $[1; +\infty[, f'(x) = 5 \times \frac{1}{2\sqrt{5x-2}}]$ soit $f'(x) = \frac{5}{2\sqrt{5x-2}}$

Exemple 2: Soit la fonction f définie sur \mathbb{R} par $f(x) = (x^3 - 3x^2 + 1)^4$

f est une fonction polynôme, donc f est dérivable sur \mathbb{R} .

Déterminons sa fonction dérivée : $f(x) = u^4(x)$ avec $u(x) = x^3 - 3x^2 + 1$

$$f'(x) = 4 u^3(x) . u'(x)$$

$$f'(x) = 4(x^3 - 3x^2 + 1)^3(3x^2 - 6x)$$

4 Fonctions cosinus et sinus

4.1 Dérivée des fonctions cosinus et sinus

Les fonctions cosinus et sinus sont dérivables sur $\mathbb R$

On admet que:

$$(\cos)'(x) = -\sin(x)$$
 et $(\sin)'(x) = \cos(x)$

Propriété:

Comme la fonction sinus est dérivable sur \mathbb{R} , elle est donc dérivable enx=0.

$$(\sin)'(0) = \lim_{h \to 0} \frac{\sin(0+h) - \sin(0)}{h}$$
$$(\sin)'(0) = \lim_{h \to 0} \frac{\sin(h) - 0}{h}$$
$$\cos(0) = \lim_{h \to 0} \frac{\sin(h) - 0}{h}$$

$$1 = \lim_{h \to 0} \frac{\sin(h)}{h}$$

4.2 Propriétés des fonctions sinus et cosinus

4.2.1 Parité.

La fonction cosinus est une **fonction paire**, en effet :

- Elle est définie sur \mathbb{R} qui est symétrique par rapport à 0.
- cos(-x) = cos(x) pour tout réel x.

La fonction sinus est une **fonction impaire**, en effet :

- Elle est définie sur \mathbb{R} qui est symétrique par rapport à 0.
- sin(-x) = -sin(x) pour tout réel x.

4.2.2 Périodicité.

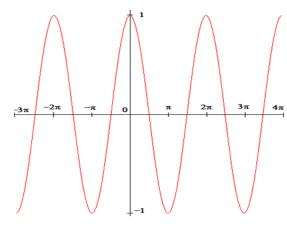
La fonction cosinus est **périodique** de période $T=2\pi$, en effet :

Pour tout
$$x \in \mathbb{R}$$
, $cos(x + 2\pi) = cos(x)$.

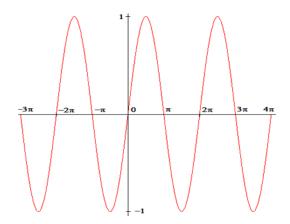
La fonction sinus est **périodique** de période $T=2\pi$, en effet :

Pour tout
$$x \in \mathbb{R}$$
, $sin(x + 2\pi) = sin(x)$.

4.3 Représentation graphique des fonctions cosinus et sinus.



Courbe représentative de la fonction **cosinus**



Courbe représentative de la fonction **sinus**