CHAPITRE 3 : Fonction exponentielle

1	La fo	La fonction exponentielle				
	1.1	Théorème sur l'unicité de la solution à l'équation différentielle $y'=y$ telle que f (0) = 1	. 2			
	1.2	Relation fonctionnelle de la fonction exponentielle	. 4			
	1.3	Positivité de la fonction exponentielle	. 4			
	1.4	Sens de variation de la fonction exponentielle	. 5			
2	Prop	priétés de la fonction exponentielle	. 5			
	2.1	Corollaires de la relation fonctionnelle de la fonction exponentielle	. 5			
	2.2	Nombre $m{e}$; notation $m{e}^x$. 6			
	2.3	Egalités et inégalités	. 7			
3	Limi	ites liées à la fonction exponentielle	. 7			
	3.1	Limite de la fonction exponentielle en + ∞	. 7			
	3.2	Limite de la fonction exponentielle en - ∞	. 8			
	3.3	$\lim_{x \to +\infty} \frac{e^x}{x}$ Limite $\lim_{x \to +\infty} \frac{e^x}{x}$. 8			
	3.4	$\lim_{x \to -\infty} xe^x$ Limite $x \to -\infty$				
	3.5	$\lim_{x \to 0} \frac{e^x - 1}{x}$. 9			
	3.6	Tableau de variation et représentation graphique	. 9			
4	Fone	ctions de la forme $x\mapsto e^{u(x)}$	10			

CHAPITRE 3: Fonction exponentielle

1 La fonction exponentielle

1.1 Théorème sur l'unicité de la solution à l'équation différentielle y' = y telle que f(0) = 1

Soit y une fonction définie et dérivable sur un intervalle I de \mathbb{R} .

Résoudre sur I l'équation différentielle y' = y, c'est rechercher les solutions qui sont les fonctions f dérivables sur I vérifiant f'(x) = f(x) pour tout x de I.

Si de plus, le problème impose à f comme condition initiale $f(x_0) = y_0$ avec $x_0 \in I$ et $y_0 \in \mathbb{R}$, on écrit l'équation différentielle : $\begin{cases} y' = y \\ f(x_0) = y_0 \end{cases}$

Exemple:

Résoudre sur \mathbb{R} l'équation y' = y et f(0) = 1, c'est rechercher la fonction f dérivable sur \mathbb{R} telle que pour tout x de \mathbb{R} , f'(x) = f(x) et f(0) = 1.

Théorème:

Il <u>existe</u> une <u>unique</u> fonction f dérivable sur \mathbb{R} , qui est la solution de l'équation différentielle :

$$\begin{cases}
\text{pour tout réel } x, \ f'(x) = f(x) \\
f(0) = 1
\end{cases}$$
(E)

L'existence de la solution f est admise

La méthode d'Euler permet de conjecturer l'existence de la solution f.

Démonstration de l'unicité de la solution f

• Montrons d'abord que pour tout réel $x f(x) \neq 0$

Considérons la fonction Φ définie sur \mathbb{R} par $\Phi(x) = f(-x) \times f(x)$

Rappel:

Soit une fonction définie et dérivable sur $\mathbb{R}: x \mapsto f(ax+b)$

Sa dérivée est la fonction $x \mapsto af'(ax + b)$.

En particulier pour a=-1 et b=0, la dérivée de la fonction définie et dérivable sur $\mathbb R$:

 $x \mapsto f(-x)$ est la fonction $x \mapsto -f'(-x)$.

¹ Une **équation différentielle** est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées.

On a admis que f, fonction dérivable sur \mathbb{R} , solution de y'=y, existait. Donc on peut définir la fonction Φ telle que $\Phi(x)=f(-x)\times f(x)$.

 Φ est dérivable sur \mathbb{R} .

Si on pose
$$\begin{cases} u(x) = f(-x) \\ v(x) = f(x) \end{cases} \text{ alors } \begin{cases} u'(x) = -f'(-x) \\ v'(x) = f'(x) \end{cases}$$

D'où:

$$\Phi'(x) = -f'(-x).f(x) + f(-x).f'(x)$$

Une des hypothèses est que f est solution de l'équation différentielle y' = y. Donc on a f'(x) = f(x) pour tout réel x.

D'où:
$$\Phi'(x) = -f(-x).f(x) + f(-x).f(x)$$

 $\Phi'(x) = 0$

Lorsque la dérivée d'une fonction est nulle pour tout réel x, cette fonction est constante. Φ est donc **une fonction constante**.

Pour trouver cette constante, on utilise l'hypothèse f(0) = 1.

Comme $\Phi(x) = f(-x) \times f(x)$ pour tout réel x, on a :

$$\Phi(0) = f(-0) \times f(0) = 1 \times 1 = 1$$

donc la fonction constante Φ est définie pour tout réel par $\Phi(x) = 1$ Soit $\Phi(x) = f(-x) \times f(x) = 1$ pour tout réel x.

Cela permet d'affirmer que pour tout réel x $f(x) \neq 0$

• Montrons ensuite que la solution f est **unique**.

Supposons qu'il existe g une autre fonction dérivable sur $\mathbb R$, qui est solution de l'équation différentielle :

$$\begin{cases} \text{pour tout r\'eel } x, \ g'(x) = g(x) \\ g(0) = 1 \end{cases}$$
 (E)

Considérons $m{h}$ la fonction dérivable sur $\mathbb R$ définie par : $m{h} = rac{m{g}}{m{f}}$

La condition $f(x) \neq 0$ pour tout réel x est vraie comme cela a été démontré dans le premier point.

Montrons que h(x) = 1 pour tout réel x ce qui prouvera que g(x) = f(x) pour tout réel x.

La fonction h est le quotient de deux fonctions dérivables sur $\mathbb R$. Donc h est dérivable sur $\mathbb R$ et on a :

$$h'(x) = \frac{g'(x) \times f(x) - g(x) \times f'(x)}{[f(x)]^2}$$

Or g et f sont des solutions de l'équation (E) donc g'=g et f'=f

Pour tout réel x on a :

$$h'(x) = \frac{g(x) \times f(x) - g(x) \times f(x)}{[f(x)]^2}$$
$$h'(x) = 0$$

Donc h est une fonction constante sur \mathbb{R} .

Or $h(0) = \frac{g(0)}{f(0)} = \frac{1}{1} = 1$ donc pour tout réel x, $h(x) = \frac{g(x)}{f(x)} = 1$.

Donc $\forall x \in \mathbb{R}$, g(x) = f(x). **Donc g et f sont égales**. Ainsi l'équation (E) admet une unique solution.

Définition :

On appelle **fonction exponentielle** l'unique fonction f dérivable sur \mathbb{R} telle que f' = f et f(0) = 1. Cette fonction sera notée provisoirement \exp .

exp est donc la seule fonction dérivable sur \mathbb{R} , telle que $(\exp)' = \exp \ \text{et} \ \exp(0) = 1$

Dérivée de la fonction exponentielle :

La fonction exponentielle est continue et dérivable sur \mathbb{R} . Sa dérivée est égale à elle-même :

Pour tout réel x, $\exp'(x) = \exp(x)$.

Remarque

Puisqu'elle est dérivable sur \mathbb{R} , la fonction exponentielle est continue sur \mathbb{R} .

1.2 Relation fonctionnelle² de la fonction exponentielle

Pour tous réels a et b, $exp(a+b) = exp(a) \times exp(b)$

1.3 Positivité de la fonction exponentielle

 $\exp(a) > 0$ pour tout réel a.

Démonstration:

D'après la relation fonctionnelle : pour tout $a \in \mathbb{R}$ $\exp\left(\frac{a}{2} + \frac{a}{2}\right) = \exp\left(\frac{a}{2}\right) \times \exp\left(\frac{a}{2}\right)$ ce qui s'écrit :

$$\exp\left(\frac{a}{2} + \frac{a}{2}\right) = \left[\exp\left(\frac{a}{2}\right)\right]^2$$

² Une relation fonctionnelle est une relation utilisant les opérations qui est propre à une fonction donnée.

Comme un carré est toujours positif ou nul, on déduit que :

Pour tout
$$a \in \mathbb{R}$$
, $\exp\left(\frac{a}{2} + \frac{a}{2}\right) \ge 0$

soit :
$$\exp(a) \ge 0$$
.

On a démontré précédemment que pour tout réel $a \exp(a) \neq 0$, ce qui permet de conclure :

Pour tout réel a, $\exp(a) > 0$.

1.4 Sens de variation de la fonction exponentielle

La fonction exponentielle est strictement croissante sur \mathbb{R} .

Démonstration:

On sait que la fonction exponentielle est définie et dérivable sur \mathbb{R} et que pour tout réel x, $\exp'(x) = \exp(x)$.

D'après la positivité de la fonction exponentielle, on sait aussi que $\exp'(x) > 0$ pour tout réel x.

Conclusion:

La fonction exponentielle est strictement croissante sur \mathbb{R} .

2 Propriétés de la fonction exponentielle

2.1 Corollaires de la relation fonctionnelle de la fonction exponentielle

Pour tous réels a et b et pour tout entier relatif n:

$$(1) \qquad \exp(2a) = [\exp(a)]^2$$

(2)
$$\exp(-a) = \frac{1}{\exp(a)}$$

(3)
$$\exp(a-b) = \frac{\exp(a)}{\exp(b)}$$

(4)
$$\exp(na) = [exp(a)]^n$$

Démonstrations:

(1) Pour tout réel a:

$$\exp(2a) = \exp(a + a)$$

 $\exp(2a) = \exp(a) \times \exp(a)$ en utilisant la relation fonctionnelle de la fonction exp.
 $\exp(2a) = [\exp(a)]^2$

(2) Pour tout réel a:

$$\exp(a) \times \exp(-a) = \exp(a-a)$$
 en utilisant la relation fonctionnelle de la fonction exp. $\exp(a) \times \exp(-a) = \exp(0)$

$$\exp(a) \times \exp(-a) = 1$$

$$\exp(-a) = \frac{1}{\exp(a)}$$

(3) Pour tous réels a et b:

 $\exp(a) \times \exp(-b) = \exp(a-b)$ en utilisant la relation fonctionnelle de la fonction exp. Or, d'après (2):

$$\exp(-b) = \frac{1}{\exp(b)}$$

Donc:

$$\exp(a) \times \frac{1}{\exp(b)} = \exp(a - b)$$

$$\frac{\exp(a)}{\exp(b)} = \exp(a - b)$$

(4)

Dans un premier temps, démontrons par récurrence que la propriété

 P_n : $\exp(na) = [\exp(a)]^n$ est vraie pour tout $n \in \mathbb{N}$.

Initialisation:

D'une part, $\exp(0) = 1$. Donc $\exp(0a) = 1$.

D'autre part, $[\exp(a)]^0 = 1$ en utilisant la propriété $x^0 = 1$ pour tout réel $x \neq 0$.

Finalement $\exp(0a) = [\exp(a)]^0$. Donc P_0 est vraie.

Hérédité:

Supposons que P_k soit vraie , où k est un naturel donné : $\exp(ka) = [\exp(a)]^k$.

Montrons qu'alors P_{k+1} est vraie, c'est-à-dire que : $\exp[(k+1) \times a] = [\exp(xa)]^{k+1}$

On a : $\exp[(k+1) \times a] = \exp[ka+a]$

 $\exp[(k+1) \times a] = \exp(ka) \times \exp(a)$ en utilisant la relation fonctionnelle de exp.

 $\exp[(k+1) \times a] = [\exp(a)]^k \times \exp(a)$ en utilisant l'hypothèse de récurrence

$$\exp[(k+1) \times a] = [\exp(a)]^{k+1}$$
 donc P_{k+1} vraie

- Conclusion : la propriété P_n : $\exp(na) = [\exp(a)]^n$ est vraie pour tout $n \in \mathbb{N}$.
- On admet que la relation est vraie pour tout $n \in \mathbb{Z}^-$ (ensemble des entiers négatifs).

2.2 Nombre e; notation e^x

D'après la relation (4) établie précédemment, $\exp(px) = [\exp(x)]^p \quad \forall p \in \mathbb{Z}$.

En particulier, pour x = 1, $\exp(p) = [\exp(1)]^p \quad \forall p \in \mathbb{Z}$.

On note e le nombre³ qui est l'image de 1 par la fonction exponentielle : $\exp(1) = e$

Une valeur approchée de e à 10^{-3} près est 2,718.

 e^x se lit « e exposant x »ou « exponentielle de x »

Avec cette notation, $\exp(p) = e^p$, $\forall p \in \mathbb{Z}$

 3 Le mathématicien suisse Léonard Euler utilisa en 1728 pour la première fois la notation e.

On généralise cette nouvelle écriture de la fonction exponentielle pour tout $x \in \mathbb{R}$:

$$\exp(x) = e^x, \ \forall x \in \mathbb{R}$$

• La relation fonctionnelle et ses corollaires déjà démontrés s'écrivent alors avec cette nouvelle notation :

Pour tous réels a et b et pour tout entier relatif n:

$$e^{a+b} = e^a \times e^b$$
 $e^{-a} = \frac{1}{e^a}$ $e^{a-b} = \frac{e^a}{e^b}$ $e^{na} = (e^a)^n$

On a aussi:

- La fonction $x \mapsto e^x$ est dérivable sur \mathbb{R} et sa dérivée est elle-même.
- $e^0 = 1$.
- $\forall x \in \mathbb{R}, e^x > 0$.
- La fonction $x \mapsto e^x$ est strictement croissante sur \mathbb{R} .

2.3 Egalités et inégalités

Egalités équivalentes

Pour tous réels a et b: $\exp(a) = \exp(b)$ équivaut à a = b.

Inégalités équivalentes

Pour tous réels a et b: $\exp(a) < exp(b)$ équivaut à a < b.

3 Limites liées à la fonction exponentielle

3.1 Limite de la fonction exponentielle en + ∞

$$\lim_{x\to+\infty}e^x=+\infty$$

Démonstration:

• Etudions d'abord le sens de variation de la fonction f définie sur $\mathbb R$ par :

$$f(x) = e^x - x$$

f est dérivable sur \mathbb{R} comme somme de fonctions dérivables et $f'(x) = e^x - 1$

Si $x \ge 0$ alors :

 $e^x \ge e^0$ car la fonction exponentielle est strictement croissante sur \mathbb{R} .

 $e^x \ge 1$

 $e^x - 1 \ge 0$

D'où le tableau de variation de la fonction f:

х	-∞		0		+∞
f'(x)		_	0	+	
f			1		*

Donc, d'après le tableau de variations de f, pour tout $x \in \mathbb{R}$:

$$e^x - x > 0$$

$$e^x > x$$

• Puis, appliquons le théorème de comparaison :

$$\lim_{x \to +\infty} (x) = +\infty$$

donc

$$\lim_{x\to+\infty}e^x=+\infty$$

3.2 Limite de la fonction exponentielle en - ∞

$$\lim_{x\to-\infty}e^x=0$$

<u>Démonstration</u>: On transforme l'expression e^x de façon à pouvoir utiliser le résultat du § 3.1.

$$\overline{\lim_{x \to -\infty} e^x} = \lim_{x \to -\infty} \frac{1}{e^{-x}}$$

$$\lim_{\substack{x \to -\infty \\ X \to +\infty}} (-x) = +\infty \\ \lim_{\substack{x \to +\infty \\ X \to +\infty}} e^{X} = +\infty$$
 donc par composition $\lim_{\substack{x \to -\infty \\ x \to -\infty}} e^{-x} = +\infty$

Et par inverse :

$$\lim_{x \to -\infty} \frac{1}{e^{-x}} = 0$$

Conclusion:

$$\lim_{x\to-\infty}e^x=0$$

3.3 Limite
$$\lim_{x\to +\infty} \frac{e^x}{x}$$

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

3.4 Limite
$$\lim_{x\to -\infty} xe^x$$

$$\lim_{x\to-\infty} x.\,e^x=0$$

3.5 Limite
$$\lim_{x\to 0} \frac{e^x-1}{x}$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Démonstration :

$$\lim_{x\to 0}\frac{e^x-1}{x}=\lim_{x\to 0}\frac{f(0+x)-f(0)}{x}\qquad \text{où }f\text{ est la fonction }x\mapsto e^x\text{, définie et dérivable sur }\mathbb{R}.$$

 $\lim_{x\to 0}\frac{e^{x}-1}{x}=f'(0) \text{ en utilisant la définition du nombre dérivé en } 0.$

Or,
$$f'(0) = e^0 = 1$$
 donc

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

3.6 Tableau de variation et représentation graphique

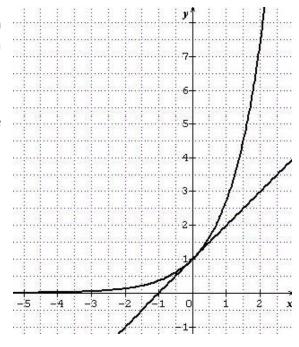
x	-∞ +∞
Signe de $f'(x)$	+
sens de variation de f	0 +8

$$\lim_{x\to-\infty}e^x=0$$

donc l'axe des abscisses est une asymptote à la courbe représentative de la fonction exponentielle en $-\infty$.

• La droite T_0 d'équation $y=m\,x+p$ est la tangente à la courbe \mathcal{C}_f représentative de la fonction exponentielle au point d'abscisse 0.

$$m=f'(0)=e^0=1$$
 donc $y=x+p$
Le point de la courbe C_f d'abscisse 0 a pour ordonnée $e^0=1$. Donc $1=0+p$
Donc la tangente T_0 a pour équation $y=x+1$.



4 Fonctions de la forme $x \mapsto e^{u(x)}$

Soit u une fonction définie et dérivable sur un intervalle I.

On admet que la fonction composée f définie sur I par $f(x) = e^{u(x)}$ est dérivable sur I et que :

$$f'(x) = u'(x) \times e^{u(x)}$$

Remarque:

Dans $f'(x) = u'(x) \times e^{u(x)}$, le facteur $e^{u(x)}$ est strictement positif pour tout $x \in I$. Donc f'(x) est du même signe que u'(x). Ainsi la fonction e^u a le même sens de variation que la fonction u sur I.

Exemples:

- f définie sur \mathbb{R} par $f(x) = e^{-kx}$ avec k > 0 est décroissante sur \mathbb{R} .
- f définie sur \mathbb{R} par $f(x) = e^{-kx^2}$ avec k > 0 a le même sens de variation sur \mathbb{R} que la fonction $x \mapsto -kx^2$ c'est-à-dire croissante sur $]-\infty$; 0] et décroissante sur $[0; +\infty[$.