Chapitre 7 Variables aléatoires – COURS

1.	٧a	ariable ale	eatoire	2
		Exemple		2
		Définitio	ns	2
		Exemple		2
		Définitio	n	2
2.	Lo	i de prob	abilité d'une variable aléatoire	2
2	.1	Exemp	oles	2
		2.1.1	Exemple 1 avec un tableau	2
		2.1.2	Exemple 2 avec un arbre	3
2	.2	Défini	tion d'une loi de probabilité de variable aléatoire	4
3.	Pa	aramètres	d'une variable aléatoire	5
3	.1	Espéra	nce mathématique d'une variable aléatoire	5
3	.2	Varian	ce et écart type d'une variable aléatoire	5
		3.2.1	Comment quantifier la dispersion d'une variable aléatoire ?	5
		3.2.2	Définition de la variance d'une variable aléatoire	7
		3 2 3	Définition de l'écart type d'une variable aléatoire	8

1. Variable aléatoire

Exemple

Soit l'expérience aléatoire : "On lance un dé à six faces et on regarde le résultat."

L'ensemble de toutes les issues possibles $\Omega = \{1; 2; 3; 4; 5; 6\}$ s'appelle l'univers des possibles.

On considère l'événement A: "On obtient un résultat pair." On a donc : $A = \{2; 4; 6\}$.

On considère l'événement élémentaire E: "On obtient un 3". On a donc : $E = \{3\}$.

Définitions

- Chaque résultat d'une expérience aléatoire s'appelle une issue.
- L'<u>univers des possibles</u> est l'ensemble des issues d'une expérience aléatoire.
- Un <u>événement</u> est un sous-ensemble de l'univers des possibles.
- > Un événement élémentaire est un événement contenant une seule issue.

Exemple

Dans l'expérience précédente, on considère le jeu suivant :

- Si le résultat est pair, on gagne 2 €.
- Si le résultat est 1, on gagne 3 €.
- Si le résultat est 3 ou 5, on perd 4 €.

On a défini ainsi une variable aléatoire X sur $\Omega = \{1; 2; 3; 4; 5; 6\}$ qui peut prendre les valeurs 2, 3 ou -4.

On a donc: X(1) = 3; X(2) = 2; X(3) = -4; X(4) = 2; X(5) = -4; X(6) = 2.

Définition

Une <u>variable aléatoire</u> X est une fonction définie sur un univers Ω et à valeur dans \mathbb{R} .

2. Loi de probabilité d'une variable aléatoire

2.1 Exemples

2.1.1 Exemple 1 avec un tableau

On dispose de deux dés cubiques bien équilibrés : un rouge et un vert notés R et V. On lance les deux dés et on note le résultat de chaque dé. Par exemple, un résultat pourra être (R1;V4). Le jeu suivant est organisé :

Un joueur lance les dés.

- Si aucun dé ne fait 6, le joueur perd 3 €.
- Si un seul des deux dés fait 6, le joueur gagne 2 €.
- Si les deux dés font 6, le joueur gagne 5 €.
- 1. Déterminer l'ensemble E de toutes les issues possibles.
- 2. Donner la loi de probabilité du gain algébrique¹ du joueur.

¹ Gain algébrique : gain qui peut être positif ou négatif

Réponse:

1. Comme il y a deux dés indépendants, un tableau à double entrée permet de représenter toutes les issues possibles. Dans chaque cellule du tableau, on écrit le gain algébrique obtenu.

Dé vert Dé rouge	1	2	3	4	5	6
1	-3	-3	-3	-3	-3	2
2	-3	-3	-3	-3	-3	2
3	-3	-3	-3	-3	-3	2
4	-3	-3	-3	-3	-3	2
5	-3	-3	-3	-3	-3	2
6	2	2	2	2	2	5

L'ensemble des 3 résultats provenant de cette expérience aléatoire est : $E = \{-3; 2; 5\}$

2. La loi de probabilité du gain à ce jeu est résumée dans le tableau suivant :

Valeurs du gain	-3€	2€	5€	TOTAL
Probabilité	25 36	$\frac{10}{36}$	$\frac{1}{36}$	1

2.1.2 Exemple 2 avec un arbre

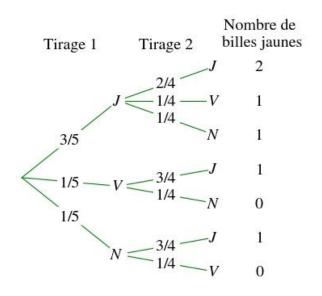
Une boîte contient trois billes jaunes, une bille verte et une bille noire.

Un jeu consiste à tirer au hasard une bille de la boîte et, sans la remettre, à tirer une seconde bille. On s'intéresse au nombre de billes jaunes obtenues.

- 1. Déterminer l'ensemble E de toutes les issues possibles.
- 2. Donner la loi de probabilité de la variable aléatoire « nombre de billes jaunes obtenues ».

Réponse :

1. On peut faire un arbre pour représenter toutes les issues possibles. Au bout de chaque branche, on écrit le nombre de billes jaunes obtenues.



L'ensemble des 3 résultats provenant de cette expérience aléatoire est :

$$E = \{0; 1; 2\}$$

2. Calcul des probabilités

La probabilité de n'obtenir aucune bille jaune est :

$$\left(\frac{1}{5} \times \frac{1}{4}\right) + \left(\frac{1}{5} \times \frac{1}{4}\right) = \frac{2}{20} = \frac{1}{10}$$

La probabilité d'obtenir une bille jaune est :

$$\left(\frac{3}{5} \times \frac{1}{4}\right) + \left(\frac{3}{5} \times \frac{1}{4}\right) + \left(\frac{1}{5} \times \frac{3}{4}\right) + \left(\frac{1}{5} \times \frac{3}{4}\right) = \frac{12}{20} = \frac{6}{10}$$

La probabilité d'obtenir deux billes jaunes est :

$$\frac{3}{5} \times \frac{2}{4} = \frac{6}{20} = \frac{3}{10}$$

On fait un tableau pour donner la loi de probabilité du nombre de billes jaunes obtenues :

Nombre de billes jaunes obtenues	0	1	2	TOTAL
Probabilité	$\frac{1}{10}$	$\frac{6}{10}$	$\frac{3}{10}$	1

2.2 Définition d'une loi de probabilité de variable aléatoire

Soit E l'ensemble des n résultats d'une expérience aléatoire.

$$E = \{x_1; x_2; ...; x_n\}$$

Lorsqu'on répète l'expérience un grand nombre de fois, la distribution des fréquences observées tend vers la distribution des fréquences théoriques.

Cette distribution des fréquences théoriques est appelée loi de probabilité.

Etablir la loi de probabilité d'une expérience aléatoire, c'est :

- Déterminer l'ensemble E de toutes les issues possibles de l'expérience $x_1; x_2; ...; x_n$
- Calculer les probabilités correspondantes p_1 ; p_2 ; ...; p_n
- Résumer dans un tableau les résultats :

Valeurs possibles de la variable aléatoire	x_1	x_2	 x_n	TOTAL
Probabilité correspondantes	p_1	p_2	 p_n	1

3. Paramètres d'une variable aléatoire

Espérance mathématique d'une variable aléatoire 3.1

Définition:

L'espérance mathématique d'une variable aléatoire X qui suit une loi de probabilité est la moyenne :

$$E(X) = p_1 \times x_1 + p_2 \times x_2 + p_3 \times x_3 + \dots + p_n \times x_n$$

On écrit aussi sous forme condensée :
$$E(X) = \sum_{i=1}^{n} p_i \times x_i$$

Exemple:

On considère le jeu du tirage successif de deux billes sans remise, vu au paragraphe 2.1.2.

Nombre de billes jaunes obtenues	0	1	2	TOTAL
Probabilité	$\frac{1}{10}$	$\frac{6}{10}$	$\frac{3}{10}$	1

L'espérance de cette loi de probabilité est :

$$E(X) = \frac{1}{10} \times 0 + \frac{6}{10} \times 1 + \frac{3}{10} \times 2$$
 $E(X) = \frac{12}{10}$ $E(X) = 1.2$

$$E(X) = \frac{12}{10}$$

$$E(X)=1,2$$

• Interprétation de l'espérance :

Le nombre moyen de billes jaunes obtenu à chaque partie tend vers 1,2 lorsqu'on fait tendre le nombre de parties vers l'infini.

Variance et écart type d'une variable aléatoire 3.2

Comment quantifier la dispersion d'une variable aléatoire? 3.2.1

Exemple:

Deux joueurs A et B disposent chacun de 1000 € et décident de jouer cette somme au casino, au jeu de la roulette. La roulette comporte 37 numéros. 18 sont noirs, 18 sont rouges, 1 est vert.

Le joueur A choisit la méthode suivante :

Il mise ses 1000 € sur le noir. Si la bille s'arrête sur le noir, il gagne 2000 €. Si la bille s'arrête sur le rouge ou le vert, il ne gagne rien.

• Le joueur B choisit la méthode suivante :

Il mise ses 1000 € sur le n°23. Si la bille s'arrête sur le n° 23, il gagne 36000 €. Si la bille s'arrête sur un autre numéro, il ne gagne rien.

- 1) Pour le joueur A:
 - a) Donner l'ensemble des gains algébriques X_A possibles.
 - b) Déterminer la loi de probabilité de X_A
 - c) Calculer l'espérance mathématique $E(X_A)$ du gain.

- 2) Pour le joueur B:
 - a) Donner l'ensemble des gains algébriques X_B possibles.
 - b) Déterminer la loi de probabilité de X_B
 - c) Calculer l'espérance mathématique $E(X_B)$ du gain.
- Pour lequel des deux joueurs ce jeu est-il le plus risqué ?

Réponse :

- 1) Pour le joueur A:
 - a) Le gain algébrique est :
 - S'il gagne : -1000 + 2000 = +1000 €
 - S'il perd : -1000 + 0 = -1000 €

$$X_A \in \{-1000; 1000\}$$

b) La loi de probabilité de X_A est résumée dans le tableau suivant :

x_i	-1000	1000	TOTAL
$P(X_A = x_i)$	$\frac{19}{37}$	$\frac{18}{37}$	1

c) L'espérance du gain est :

$$E(X_A) = \frac{19}{37} \times -1000 + \frac{18}{37} \times 1000$$

$$E(X_A) = -\frac{19000}{37} + \frac{18000}{37}$$
 $E(X_A) = -\frac{1000}{37}$ $E(X_A) \approx -27,03 \in$

$$E(X_A) = -\frac{1000}{37}$$

$$E(X_A)\approx -27{,}03\in$$

6/8

S'il répète un très grand nombre de fois ce jeu, le joueur A perdra en moyenne 27,03 € par partie.

- 2) Pour le joueur B:
 - a) Le gain algébrique est :
 - S'il gagne : -1000 + 36000 = +35000 €
 - S'il perd : -1000 + 0 = -1000 €

$$X_B \in \{-1000; 35000\}$$

b) La loi de probabilité de X_B est résumée dans le tableau suivant :

x_i	-1000	35000	TOTAL
$P(X_B = x_i)$	$\frac{36}{37}$	$\frac{1}{37}$	1

c) L'espérance du gain est :

$$E(X_B) = \frac{36}{37} \times -1000 + \frac{1}{37} \times 35000$$

$$E(X_B) = -\frac{36000}{37} + \frac{35000}{37}$$
 $E(X_B) = -\frac{1000}{37}$ $E(X_B) \approx -27,03 \in$

S'il répète un très grand nombre de fois ce jeu, le joueur B perdra en moyenne 27,03 € par partie.

3) Bien que l'espérance mathématique du gain soit la même pour les deux joueurs, on peut voir que, sur une partie, le joueur B prend plus de risques que le joueur A.

Mathématiquement, on peut quantifier ce risque en calculant la variance de la loi de probabilité : c'est la moyenne des carrés des écarts entre les valeurs $x_1, x_2, ..., x_n$ et l'espérance E(X)

Exemple:

Calculer la variance des variables aléatoires précédentes

x_i	-1000	1000	TOTAL
$P(X_A = x_i)$	19 37	18 37	1

Espérance mathématique :

$$E(X_A) = -\frac{1000}{37} \in$$

La variance:

$$V(X_A) = \frac{19}{37} \times \left(-1000 - \left(-\frac{1000}{37}\right)\right)^2 + \frac{18}{37} \times \left(1000 - \left(-\frac{1000}{37}\right)\right)^2$$
$$V(X_A) \approx 999\ 269,54$$

x_i	-1000	35000	TOTAL
$P(X_B = x_i)$	$\frac{36}{37}$	$\frac{1}{37}$	1

Espérance mathématique :

$$E(X_B) = -\frac{1000}{37} \in$$

La variance:

$$V(X_B) = \frac{36}{37} \times \left(-1000 - \left(-\frac{1000}{37}\right)\right)^2 + \frac{1}{37} \times \left(35000 - \left(-\frac{1000}{37}\right)\right)^2$$
$$V(X_B) \approx 34\,080\,350,62$$

La variance $V(X_B)$ est nettement supérieure à la variance $V(X_A)$ ca qui traduit un risque nettement plus élevé pour le joueur B.

Définition 1:

La variance d'une loi de probabilité est la moyenne :

$$V(X) = p_1 \times (x_1 - E(X))^2 + p_2 \times (x_2 - E(X))^2 + p_3 \times (x_3 - E(X))^2 + \dots + p_n \times (x_n - E(X))^2$$

On écrit aussi sous forme condensée :
$$V(X) = \sum_{i=1}^{n} p_i \times (x_i - E(X))^2$$

Définition 2:

On démontre que la variance d'une loi de probabilité est la moyenne des carrés moins l'espérance au carré :

$$V(X) = p_1 \times (x_1)^2 + p_2 \times (x_2)^2 + p_3 \times (x_3)^2 + \dots + p_n \times (x_n)^2 - E(X)^2$$

On écrit aussi sous forme condensée :
$$V(X) = \sum_{i=1}^{n} (p_i \times (x_i)^2) - E(X)^2$$

Exemple:

Calculer la variance $V(X_B)$ par la deuxième définition :

$$V(X_B) = \frac{36}{37} \times (-1000)^2 + \frac{1}{37} \times (35000)^2 - \left(-\frac{1000}{37}\right)^2 \qquad V(X_B) \approx 34\,080\,350,62$$

3.2.3 Définition de l'écart type d'une variable aléatoire

Etant donné sa formule de calcul, la variance n'est pas dans la même unité que les valeurs x_1, x_2, \dots, x_n mais dans cette unité au carré. Par exemple $V_B \approx 34\,080\,350,62\,€^2$

On définit un autre paramètre de dispersion, l'écart type :

$$\sigma(X_B) = \sqrt{V(X_B)}$$

Exemple:

Calculer l'écart type des lois de probabilité du gain des joueurs A et B.

Réponse :

• Pour le gain de A, la variance est $V_A \approx 999 \ 269,54$

L'écart type est donc :
$$\sigma(X_A) = \sqrt{V(X_A)}$$

$$\sigma(X_A) \approx \sqrt{999269,54}$$

$$\sigma(X_A) \approx 999,63 \in$$

• Pour le gain de B, la variance est $V_B \approx 34\,080\,350,62$

$$\sigma(X_B) = \sqrt{V_B}$$

$$\sigma(X_B) \approx \sqrt{34\,080\,350,62}$$

$$\sigma(X_B) \approx 5837,84 \in$$

Remarques

- La variance et l'écart type sont toujours positifs.
- Un jeu d'argent est dit <u>équitable</u>, si l'espérance du gain algébrique E(X) = 0.